Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity
نویسندگان
چکیده
منابع مشابه
Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment
This paper focuses on nano-morphology-controlled small-molecule organic solar cells without solvent treatment for high power-conversion efficiencies (PCEs). The maximum high PCE reaches up to 7.22% with a bulk-heterojunction (BHJ) thickness of 320 nm. This high efficiency was obtained by eliminating solvent additives such as 1,8-diiodooctane (DIO) to find an alternative way to control the domai...
متن کاملEfficiency enhancement in organic solar cells with ferroelectric polymers.
The recombination of electrons and holes in semiconducting polymer-fullerene blends has been identified as a main cause of energy loss in organic photovoltaic devices. Generally, an external bias voltage is required to efficiently separate the electrons and holes and thus prevent their recombination. Here we show that a large, permanent, internal electric field can be ensured by incorporating a...
متن کاملMultifunctional Fischer Aminocarbene Complexes as Hole or Electron Transporting Layers in Organic Solar Cells.
A new series of Fischer carbenes have been synthetized and examined as hole-transporting or electron-transporting layers (HTLs or ETLs) in the fabrication of organic solar cells (OSCs). The synthesis of three Fischer aminocarbene complexes with the general formula [Cr(CO)₅{C(NHCH₂)Ar}] (Ar = 2-pyridyl (3a), 3-pyridyl (3b) and 4-pyridyl (3c)) is reported. The molecular structure of complex 3b ha...
متن کاملAn organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells.
The high molar absorption coefficient organic D-π-A dye C220 exhibits more than 6% certified electric power conversion efficiency at AM 1.5G solar irradiation (100 mW cm(-2)) in a solid-state dye-sensitized solar cell using 2,2',7,7'-tetrakis(N,N-dimethoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This contributes to a new record (6.08% by NREL) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2020
ISSN: 0935-9648,1521-4095
DOI: 10.1002/adma.201907604